Exam Analysis on Manifolds

WIANVAR-07.2016-2017.2A
January 30, 2018
This exam consists of five assignments. The first four allow for short solutions. You get 10 points for free.

Assignment 1. ($9+6=15 \mathrm{pt}$.)
Let M be an n-dimensional C^{∞}-manifold (without boundary), with $n \geq 1$.

1. Assume that M is compact, and let $\varphi: M \rightarrow \mathbb{R}$ be a C^{∞}-function. Prove that there are at least two points at which the one-form $\mathrm{d} \varphi$ is zero. (Hint: note that φ has a maximum and a minimum on M.)
2. Give an example of a non-compact manifold M for which the previous claim does not hold.

Assignment 2. ($5+5+5=15 \mathrm{pt}$.)
Let ω be the one-form on \mathbb{R}^{3} given by $\omega=x d y-y d x+z d z$. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the map given by $\varphi(u, v)=(\cos u, \sin u, v)$.

1. Compute the one-form $\varphi^{*} \omega$ on \mathbb{R}^{2}.
2. Prove that ω is not exact.
3. Prove that $\varphi^{*} \omega$ is exact, and determine a function $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $\varphi^{*} \omega=\mathrm{d} \psi$.

Assignment 3. ($5+10=15 \mathrm{pt}$.)
Let M be an n-dimensional C^{∞}-manifold (without boundary), with $n \geq 1$.

1. Prove that every non-empty open subset of \mathbb{R}^{n} is a C^{∞}-manifold.
2. Let (U, f) be a chart of a maximal C^{∞}-atlas on M. Prove that f is a C^{∞}-map.

Assignment 4 and 5 on next page

Assignment 4. $(6+6+8=20 \mathrm{pt}$.
Let $\omega \in \Lambda^{2}\left(\mathbb{R}^{3}\right)^{*}$ be non-zero.

1. Prove that there are two independent vectors $v_{1}, v_{2} \in \mathbb{R}^{3}$ for which $\omega\left(v_{1}, v_{2}\right)=1$.
2. Suppose that we can extend the system $\left\{v_{1}, v_{2}\right\}$ of Part 1 to a basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of \mathbb{R}^{3} such that $\omega\left(v_{1}, v_{3}\right)=0$ and $\omega\left(v_{2}, v_{3}\right)=0$. Prove that $\omega=v_{1}^{\circ} \wedge \nu_{2}^{\circ}$.
(Recall that $\left\{v_{1}^{\circ}, v_{2}^{\circ}, v_{3}^{\circ}\right\}$ is the dual basis of a basis $\left\{v_{1}, v_{2}, v_{3}\right\}$.)
3. Prove that the system $\left\{v_{1}, v_{2}\right\}$ can be extended to a basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of \mathbb{R}^{3} such that $\omega=\nu_{1}^{\circ} \wedge \nu_{2}^{\circ}$.

Assignment 5. $(5+5+5+5+5=25$ pt. $)$
Let $M=\mathbb{R}^{n} \backslash\{O\}$, and let the differential form ω of degree $n-1$ on M be given by

$$
\omega=\sum_{i=1}^{n}(-1)^{i-1} \frac{x_{i}}{\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{n / 2}} d x_{1} \wedge \cdots \wedge \widehat{d x}_{i} \wedge \cdots \wedge d x_{n} .
$$

Here $O=(0, \ldots, 0) \in \mathbb{R}^{n}$. The hat over a symbol means that this symbol is omitted. Furthermore, the differential form η of degree $n-1$ on M is defined by

$$
\eta=\sum_{i=1}^{n}(-1)^{i-1} x_{i} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n}
$$

1. Prove that ω is closed
2. Let $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$ be the unit $(n-1)$-sphere with center at O, and let $i: \mathbb{S}^{n-1} \rightarrow M$ be the inclusion map. Show that $\int_{\mathbb{S}^{n-1}} i^{*} \eta \neq 0$. (Hint: \mathbb{S}^{n-1} is the boundary of the closed unit ball \mathbb{B}^{n} in \mathbb{R}^{n}; observe that η is defined on the full set \mathbb{B}^{n}.)
3. Conclude that $\int_{\mathbb{S}^{n-1}} i^{*} \omega \neq 0$. (Hint: prove that $i^{*} \omega=i^{*} \eta$.)
4. Prove that ω is not exact.
5. Show that there is no diffeomorphism $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \backslash\{\mathrm{O}\}$.

Solutions

Assignment 1.

1. Since M is compact, φ attains its maximum value at some point $p \in M$. Let $v \in T_{p} M$, say $v=c^{\prime}(0)$ for some differentiable curve $c:(-\varepsilon, \varepsilon) \rightarrow M$ with $c(0)=p$. Then $\varphi \circ c:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}$ has a maximum value at $0 \in \mathbb{R}$, so $\mathrm{d} \varphi_{\mathrm{p}}(v)=(\varphi \circ \mathrm{c})^{\prime}(0)=0$. Therefore, $\mathrm{d} \varphi_{\mathrm{p}}=0$. Since φ also has a minimum, the one-form $d \varphi$ is also zero at the point at which the minimum is attained. (If the maximum and the minimum are equal, φ is constant, so $\mathrm{d} \varphi$ is identically zero on M. Note that M is n-dimensional with $n \geq 1$, so it contains at least two points.)
2. Let $M=\mathbb{R}$, and let $\varphi(x)=x$. Then $d \varphi=d x$ is nowhere zero on M.

Assignment 2.

1. $\varphi^{*} w=\cos u d(\sin u)-\sin u d(\cos u)+v d v=d u+v d v$.
2. $d \omega=2 d x \wedge d y$, which is a nonzero two-form on \mathbb{R}^{3}. So ω is not closed, and, therefore, not exact.
3. $\mathrm{d}\left(\varphi^{*} \omega\right)=\mathrm{d}(\mathrm{d} u)+\mathrm{d} v \wedge \mathrm{~d} v=0$, so $\varphi^{*} \omega$ is closed. By Poincaré's Lemma, it is also exact. In particular, $\varphi^{*} \omega=\mathrm{d} \psi$ for $\psi(u, v)=u+\frac{1}{2} v^{2}$.

Assignment 3.

1. Let id : $\mathrm{U} \rightarrow \mathrm{U}$ be the identity map. Then $\{(\mathrm{U}, \mathrm{id})\}$ is an atlas defining a C^{∞}-structure on U . (Note that this atlas is not maximal.)
2. Let $\left\{\left(\mathrm{U}_{\alpha}, \mathrm{f}_{\alpha}\right)\right\}_{\alpha \in \mathrm{I}}$ be a maximal atlas of M containing the chart (U, f), say $f=f_{\beta}$. To prove that f is C^{∞} at an arbitrary point p of U, we have to prove that its expression in local coordinates around p in U and around $f(p)$ in M is a C^{∞}-map. So take $\alpha \in I$ such that $f(p)=f_{\beta}(p) \in f_{\alpha}\left(U_{\alpha}\right)$. We have to find a chart (V, g) on U such that $f_{\beta}(g(V)) \subset f_{\alpha}\left(U_{\alpha}\right)$ and the map $f_{\alpha}^{-1} \circ f_{\beta} \circ g: V \rightarrow U_{\alpha}$ is differentiable (as a map from the open subset V in \mathbb{R}^{n} to the open subset U_{α} in \mathbb{R}^{n}). Let $\mathrm{V}=\mathrm{f}_{\beta}^{-1}\left(\mathrm{f}_{\beta}\left(\mathrm{U}_{\beta}\right) \cap \mathrm{f}_{\alpha}\left(\mathrm{U}_{\alpha}\right)\right)$ and let $\mathrm{g}: \mathrm{V} \rightarrow \mathrm{U}_{\beta}$ be the inclusion map, then g is a C^{∞}-map. Since $f_{\alpha}^{-1} \circ f_{\beta}$ is the transition map of the charts $\left(U_{\alpha}, f_{\alpha}\right)$ and $\left(U_{\beta}, f_{\beta}\right)$, it is a C^{∞}-map. Therefore, the composition $f_{\alpha}^{-1} \circ f_{\beta} \circ g$ is a C^{∞}-map.

Remark. We gave partial credits if you based the proof on the observation that $f_{\alpha}^{-1} \circ f$ is a transition map between charts of a C^{∞}-atlas on M, but forgot to use an atlas on U.

Assignment 4.

1. Since ω is non-zero, there are vectors $w_{1}, w_{2} \in \mathbb{R}^{3}$ such that $\omega\left(w_{1}, w_{2}\right) \neq 0$. The latter inequality implies that $\left\{w_{1}, w_{2}\right\}$ is an independent system. The vectors v_{1} and v_{2}, defined by $v_{1}=\omega\left(w_{1}, w_{2}\right)^{-1} w_{1}$ and $v_{2}=w_{2}$, are independent and satisfy $\omega\left(v_{1}, v_{2}\right)=1$.
2. The claim follows from the following decomposition of ω :

$$
\omega=\omega\left(v_{1}, v_{2}\right) v_{1}^{\circ} \wedge v_{2}^{\circ}+\omega\left(v_{1}, v_{3}\right) v_{1}^{\circ} \wedge v_{3}^{\circ}+\omega\left(v_{2}, v_{3}\right) v_{2}^{\circ} \wedge v_{3}^{\circ} .
$$

3. So we have to find v_{3} such that $\omega\left(v_{1}, v_{3}\right)=0$ and $\omega\left(v_{2}, v_{3}\right)=0$. First extend the system $\left\{v_{1}, v_{2}\right\}$ to a basis $\left\{v_{1}, v_{2}, w_{3}\right\}$ of \mathbb{R}^{3}. Now take $v_{3}=w_{3}+a v_{1}+b v_{2}$, such that $\omega\left(v_{1}, v_{3}\right)=0$ and $\omega\left(v_{2}, v_{3}\right)=0$. Since $\omega\left(v_{1}, v_{2}\right)=1$, we have $\mathrm{a}=\omega\left(v_{2}, w_{3}\right)$ and $\mathrm{b}=-\omega\left(v_{1}, w_{3}\right)$.

Assignment 5.

1. This follows from a straightforward computation.
2. Let $\mathfrak{j}: \mathbb{S}^{n-1} \rightarrow \mathbb{B}^{n}$ be the inclusion map. Note that $\mathfrak{j}^{*} \eta=\mathfrak{i}^{*} \eta$. Now use Stokes:

$$
\int_{\mathbb{S}^{n}-1} i^{*} \eta=\int_{\mathbb{S}^{n}-1} j^{*} \eta=\int_{d \mathbb{B}^{n}} j^{*} \eta=\int_{\mathbb{B}^{n}} d \eta=\int_{\mathbb{B}^{n}} n d x_{1} \wedge \cdots \wedge d x_{n}=n \operatorname{Vol}\left(\mathbb{B}^{n}\right) \neq 0 .
$$

3. Let $f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{n / 2}$. Then iof $\left(x_{1}, \ldots, x_{n}\right)=1$, so the claim in the hint follows. Therefore,

$$
\int_{\mathbb{S}^{n}-1} i^{*} \omega=\int_{\mathbb{S}^{n-1}} i^{*} \eta \neq 0
$$

4. Suppose $\omega=d \sigma$ for a differential form of degree $n-2$ on M. Then

$$
\int_{\mathbb{S}^{n-1}} i^{*} \omega=\int_{\mathbb{S}^{n-1}} i^{*}(d \sigma)=\int_{\mathbb{S}^{n}-1} d\left(i^{*} \sigma\right)=\int_{\partial \mathbb{S}^{n-1}} i^{*} \sigma=0,
$$

since $\partial \mathbb{S}^{n-1}=\emptyset$. This contradiction shows that ω is not exact.
5. Suppose such a diffeomorphism exists. Then the pull-back $\phi^{*} \omega$ is closed, since $d\left(\phi^{*} \omega\right)=\phi^{*}(\mathrm{~d} \omega)=0$. According to Poincaré's Lemma, there is a differential form τ of degree $n-2$ on \mathbb{R}^{n} such that $\phi^{*} \omega=d \tau$. Since ϕ is a diffeomorphism, we have $\omega=\left(\phi^{-1}\right)^{*}(\mathrm{~d} \tau)=\mathrm{d}\left(\left(\phi^{-1}\right)^{*} \tau\right)$, so ω is exact. In view of Part 4, this is a contradiction, so there is no such diffeomorphism.

