Exam Analysis on Manifolds

WIANVAR-07.2016-2017.2A

January 30, 2018

This exam consists of five assignments. The first four allow for short solutions. You get 10 points for free.

Assignment 1. (9+6=15 pt.)

Let M be an n-dimensional C^{∞} -manifold (without boundary), with $n \ge 1$.

- 1. Assume that M is compact, and let $\varphi : M \to \mathbb{R}$ be a C^{∞} -function. Prove that there are at least two points at which the one-form $d\varphi$ is zero. (Hint: note that φ has a maximum and a minimum on M.)
- 2. Give an example of a non-compact manifold M for which the previous claim does not hold.

Assignment 2. (5+5+5=15 pt.)

Let ω be the one-form on \mathbb{R}^3 given by $\omega = x \, dy - y \, dx + z \, dz$. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ be the map given by $\varphi(u, v) = (\cos u, \sin u, v)$.

- 1. Compute the one-form $\varphi^* \omega$ on \mathbb{R}^2 .
- 2. Prove that ω is not exact.
- 3. Prove that $\phi^* \omega$ is exact, and determine a function $\psi : \mathbb{R}^2 \to \mathbb{R}$ such that $\phi^* \omega = d\psi$.

Assignment 3. (5+10=15 pt.)

Let M be an n-dimensional C^{∞} -manifold (without boundary), with $n \geq 1$.

- 1. Prove that every non-empty open subset of \mathbb{R}^n is a C^{∞} -manifold.
- 2. Let (U, f) be a chart of a maximal C^{∞} -atlas on M. Prove that f is a C^{∞} -map.

Assignment 4 and 5 on next page

Assignment 4. (6+6+8=20 pt.) Let $\omega \in \Lambda^2(\mathbb{R}^3)^*$ be non-zero.

- 1. Prove that there are two independent vectors $\nu_1,\nu_2\in \mathbb{R}^3$ for which $\omega(\nu_1,\nu_2)=1.$
- 2. Suppose that we can extend the system $\{v_1, v_2\}$ of Part 1 to a basis $\{v_1, v_2, v_3\}$ of \mathbb{R}^3 such that $\omega(v_1, v_3) = 0$ and $\omega(v_2, v_3) = 0$. Prove that $\omega = v_1^{\circ} \wedge v_2^{\circ}$. (Recall that $\{v_1^{\circ}, v_2^{\circ}, v_3^{\circ}\}$ is the dual basis of a basis $\{v_1, v_2, v_3\}$.)
- Prove that the system {ν₁, ν₂} can be extended to a basis {ν₁, ν₂, ν₃} of ℝ³ such that ω = ν₁^o ∧ ν₂^o.

Assignment 5. (5+5+5+5+5=25 pt.)

Let $M = \mathbb{R}^n \setminus \{O\}$, and let the differential form ω of degree n - 1 on M be given by

$$\omega = \sum_{i=1}^{n} (-1)^{i-1} \frac{x_i}{(x_1^2 + \dots + x_n^2)^{n/2}} \, dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n.$$

Here $O = (0, ..., 0) \in \mathbb{R}^n$. The hat over a symbol means that this symbol is omitted. Furthermore, the differential form η of degree n - 1 on M is defined by

$$\eta = \sum_{i=1}^{n} (-1)^{i-1} x_i \, dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_n.$$

- 1. Prove that ω is closed
- 2. Let $\mathbb{S}^{n-1} \subset \mathbb{R}^n$ be the unit (n-1)-sphere with center at O, and let $i: \mathbb{S}^{n-1} \to M$ be the inclusion map. Show that $\int_{\mathbb{S}^{n-1}} i^* \eta \neq 0$. (Hint: \mathbb{S}^{n-1} is the boundary of the closed unit ball \mathbb{B}^n in \mathbb{R}^n ; observe that η is defined on the full set \mathbb{B}^n .)
- 3. Conclude that $\int_{\mathbb{S}^{n-1}} i^* \omega \neq 0$. (Hint: prove that $i^* \omega = i^* \eta$.)
- 4. Prove that ω is not exact.
- 5. Show that there is no diffeomorphism $\phi : \mathbb{R}^n \to \mathbb{R}^n \setminus \{O\}$.

Solutions

Assignment 1.

1. Since M is compact, φ attains its maximum value at some point $p \in M$. Let $\nu \in T_pM$, say $\nu = c'(0)$ for some differentiable curve $c : (-\varepsilon, \varepsilon) \to M$ with c(0) = p. Then $\varphi \circ c : (-\varepsilon, \varepsilon) \to \mathbb{R}$ has a maximum value at $0 \in \mathbb{R}$, so $d\varphi_p(\nu) = (\varphi \circ c)'(0) = 0$. Therefore, $d\varphi_p = 0$. Since φ also has a minimum, the one-form $d\varphi$ is also zero at the point at which the minimum is attained. (If the maximum and the minimum are equal, φ is constant, so $d\varphi$ is identically zero on M. Note that M is n-dimensional with $n \ge 1$, so it contains at least two points.)

2. Let $M = \mathbb{R}$, and let $\varphi(x) = x$. Then $d\varphi = dx$ is nowhere zero on M.

Assignment 2.

1. $\varphi^* \omega = \cos u d(\sin u) - \sin u d(\cos u) + v dv = du + v dv$.

2. $d\omega = 2dx \wedge dy$, which is a nonzero two-form on \mathbb{R}^3 . So ω is not closed, and, therefore, not exact.

 $3.d(\varphi^*\omega) = d(du) + dv \wedge dv = 0$, so $\varphi^*\omega$ is closed. By Poincaré's Lemma, it is also exact. In particular, $\varphi^*\omega = d\psi$ for $\psi(u, v) = u + \frac{1}{2}v^2$.

Assignment 3.

1. Let $id : U \to U$ be the identity map. Then $\{(U, id)\}$ is an atlas defining a C^{∞} -structure on U. (Note that this atlas is not maximal.)

2. Let $\{(U_{\alpha}, f_{\alpha})\}_{\alpha \in I}$ be a maximal atlas of M containing the chart (U, f), say $f = f_{\beta}$. To prove that f is C^{∞} at an arbitrary point p of U, we have to prove that its expression in local coordinates around p in U and around f(p) in M is a C^{∞} -map. So take $\alpha \in I$ such that $f(p) = f_{\beta}(p) \in f_{\alpha}(U_{\alpha})$. We have to find a chart (V, g) on U such that $f_{\beta}(g(V)) \subset f_{\alpha}(U_{\alpha})$ and the map $f_{\alpha}^{-1} \circ f_{\beta} \circ g : V \to U_{\alpha}$ is differentiable (as a map from the open subset V in \mathbb{R}^n to the open subset U_{α} in \mathbb{R}^n). Let $V = f_{\beta}^{-1}(f_{\beta}(U_{\beta}) \cap f_{\alpha}(U_{\alpha}))$ and let $g : V \to U_{\beta}$ be the inclusion map, then g is a C^{∞} -map. Since $f_{\alpha}^{-1} \circ f_{\beta}$ is the transition map of the charts (U_{α}, f_{α}) and (U_{β}, f_{β}) , it is a C^{∞} -map. Therefore, the composition $f_{\alpha}^{-1} \circ f_{\beta} \circ g$ is a C^{∞} -map.

Remark. We gave partial credits if you based the proof on the observation that $f_{\alpha}^{-1} \circ f$ is a transition map between charts of a C^{∞} -atlas on M, but forgot to use an atlas on U.

Assignment 4.

1. Since ω is non-zero, there are vectors $w_1, w_2 \in \mathbb{R}^3$ such that $\omega(w_1, w_2) \neq 0$. The latter inequality implies that $\{w_1, w_2\}$ is an independent system. The vectors v_1 and v_2 , defined by $v_1 = \omega(w_1, w_2)^{-1}w_1$ and $v_2 = w_2$, are independent and satisfy $\omega(v_1, v_2) = 1$.

2. The claim follows from the following decomposition of ω :

$$\omega = \omega(\nu_1, \nu_2)\nu_1^{\circ} \wedge \nu_2^{\circ} + \omega(\nu_1, \nu_3)\nu_1^{\circ} \wedge \nu_3^{\circ} + \omega(\nu_2, \nu_3)\nu_2^{\circ} \wedge \nu_3^{\circ}.$$

3. So we have to find v_3 such that $\omega(v_1, v_3) = 0$ and $\omega(v_2, v_3) = 0$. First extend the system $\{v_1, v_2\}$ to a basis $\{v_1, v_2, w_3\}$ of \mathbb{R}^3 . Now take $v_3 = w_3 + av_1 + bv_2$, such that $\omega(v_1, v_3) = 0$ and $\omega(v_2, v_3) = 0$. Since $\omega(v_1, v_2) = 1$, we have $a = \omega(v_2, w_3)$ and $b = -\omega(v_1, w_3)$.

Assignment 5.

1. This follows from a straightforward computation.

2. Let $j:\mathbb{S}^{n-1}\to\mathbb{B}^n$ be the inclusion map. Note that $j^*\eta=i^*\eta.$ Now use Stokes:

$$\int_{\mathbb{S}^{n-1}} i^* \eta = \int_{\mathbb{S}^{n-1}} j^* \eta = \int_{\partial \mathbb{B}^n} j^* \eta = \int_{\mathbb{B}^n} d\eta = \int_{\mathbb{B}^n} n \, dx_1 \wedge \dots \wedge dx_n = n \, \operatorname{Vol}(\mathbb{B}^n) \neq 0.$$

3. Let $f(x_1, \ldots, x_n) = (x_1^2 + \cdots + x_n^2)^{n/2}$. Then $i \circ f(x_1, \ldots, x_n) = 1$, so the claim in the hint follows. Therefore,

$$\int_{\mathbb{S}^{n-1}} i^* \omega = \int_{\mathbb{S}^{n-1}} i^* \eta \neq 0.$$

4. Suppose $\omega = d\sigma$ for a differential form of degree n-2 on M. Then

$$\int_{\mathbb{S}^{n-1}} i^* \omega = \int_{\mathbb{S}^{n-1}} i^* (d\sigma) = \int_{\mathbb{S}^{n-1}} d(i^* \sigma) = \int_{\partial \mathbb{S}^{n-1}} i^* \sigma = 0,$$

since $\partial \mathbb{S}^{n-1} = \emptyset$. This contradiction shows that ω is not exact.

5. Suppose such a diffeomorphism exists. Then the pull-back $\phi^* \omega$ is closed, since $d(\phi^* \omega) = \phi^*(d\omega) = 0$. According to Poincaré's Lemma, there is a differential form τ of degree n-2 on \mathbb{R}^n such that $\phi^* \omega = d\tau$. Since ϕ is a diffeomorphism, we have $\omega = (\phi^{-1})^*(d\tau) = d((\phi^{-1})^*\tau)$, so ω is exact. In view of Part 4, this is a contradiction, so there is no such diffeomorphism.